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Abstract
In this paper we investigate the best approximation by trigonometric polynomials in weighted
Morrey spaces My, x(lo, w), where the weight function w is in the Muckenhoupt class A,(lo)
with 1 < p < oo and Iy = [0,27]. We prove the direct and inverse theorems of approximation
by trigonometric polynomials in the spaces My (Io, w) the closure of C™(Io) in M, x(Io, w).
We give the characterization of K —functionals in terms of the modulus of smoothness and
obtain the Bernstein type inequality for trigonometric polynomials in the spaces My x(lo, w).
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1 Introduction and main results

Morrey spaces date back to the paper [21] published in 1938, where C.B. Morrey studied the
local behavior of solutions to elliptic differential equations. Now Morrey spaces are used in several
branches of mathematics, first of all in analysis, PDE and potential theory.

Let 0 < A <1and1<p< co. For intervals in this paper we write

Iy=1[0,27], I(z,r)=(x—r,z+7)CR, Iy(z,r)=1I(z,r)NI.

By w we always denote a weight such that a positive, 2r—periodic and locally integrable function
on Iy. The weighted Morrey space My, x(Ip, w) is defined as the set of all functions f € L,(Iy, w)
such that

_A
I Fll Aty (To ) = Slel}o w(I (7)) P [ fll, w0 (o(2r)) < 00,
€Iy
o<r<2m

1/p
1Ly o)) = </1( )|f(t)\pw(t)dt) .
o(x,r

Under this definition M, »(lp, w) is a Banach space. If w =1 and 0 < XA < 1, then M,, x\(Ip,w) =
Mpa(lp). If A = 0, we get the weighted Lebesgue spaces L, ., (lp). If A = 1, M, 1(lp,w) =
Leo,w(Ip) by the Lebesgue differentiation theorem with respect to w (see [28]). Denote by C*°(Iy)
the set of all functions that are realized as the restriction to Iy of elements in C*°(R). The weighted
Morrey space My, x (1o, w) does not have C°°(Iy) as a dense closed subspace; the case w = 1 was

proved in [27]. We define /{/lvpyA(IO,w) as the closure of C*(ly) in M, (Lo, w).

where
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Definition 1.1. (Muckenhoupt classes) A weight function w is in the Muckenhoupt class A, (o)
with 1 < p < oo if there exists C' > 1 such that for any interval I C I

() G e <

where 1/p +1/p’ = 1 and the infimum of C satisfying the inequality (1.1) is denoted by [w]a, (z,)-
We define A (o) = U;<peo 4p({0)-

Hardy-Littlewood maximal function M f of f on Iy is defined by

Mf(z) = sup ——

up ———— |f(®)|dt, = € L.
r>0 [1(@,7)] J 1o

When p =1, w € A;1(1p) if there exists C' > 1 such that for almost every x € Iy,
Muw(z) < Cw(x), (1.2)

and the infimum of C satisfying the inequality (1.2) is denoted by [w]4, .

We will need the following theorem on the boundedness of M in the spaces My, x(Ip, w) which
proved by Y. Komori, S. Shirai [16].

Theorem A. Let 1 < p < o0, 0 <A <1 andw € A,(Iy). Then the Hardy-Littlewood mazimal
operator M is bounded on M (1o, w).

The fundamental problem in approximation theory consists in finding for a complicated function
from a normed space, a simple function (polynomial or rational function) to approximate. We
denote by P,, as the set of trigonometric polynomials having degree not exceeding n and C(Iy) the
set of 2r—periodic continuous functions. Let f € C(Iy) and F,(f) be the best approximation of f
by the trigonometric polynomials, i.e.,

En.(f)ow) = Tjrg;n [ T”HC(IO)'

The Weierstrass well-known theorem on the approximation of the continuous function by the
trigonometric polynomials and its quantitative refinement represented by Jackson inequality

E.(f)ey) < Cw (f, %)

are one of the basics of the Approximation Theory, where w(f,d), § > 0 is the modulus of continuity
of f (see [5]). The analog of Jackson inequality is correct for the mean approximation and higher
order modulus of continuity as well (see [25]). S. Bernstein [1] obtained the reversed estimations
of Jackson’s inequality in the space of continuous functions for some specific cases. Later E.S.
Quade [23], S.B. Stechkin [24], A.F. Timan [25], A.F. and M.F. Timan [26] etc. proved the reversed
type inequalities of Jackson’s inequality, including L,,1 < p < oo, spaces. These type inequalities
played an important role in the investigation of properties of the conjugate functions, in the study
of absolute convergent Fourier series [24], and in the related problems. For the approximation in
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weighted and nonweighted Lebesgue spaces, weighted Lorentz spaces, and Smirnov-Orlicz spaces
the sufficiently wide presentation can be found in the works [7], [12], [13], [14], [15], [17] and [18].
In [2] the authors investigate the best approximation by trigonometric polynomials in Morrey space

L, A (Ip).
Let N:={1,2,...} and

Apf(x) =Y (D @+ st), reN

s=0
for f € Mpa(lp,w), 0<A<1,p>1and

)

@) =5 [ 187 @) (1.3

0

One of the main problems observed in the investigations on the approximation theory is the
correct definition of the modulus of smoothness that will provide us with a better tool to deal with
the rate of the best approximation, inverse theorems and also some other similar problems. Now
we define the modulus of smoothness in M, (1o, w).

Definition 1.2. Let ¢ € M, x(lo,w), 0 < A < 1,1 < p < oo and h > 0. Then the function
2 (g,-, Mp (Lo, w)) : [0,00] = [0, +00), defined by

Q(g,h, Mpa(lo,w)) :=  sup  log(9)llm, ntow), 7 EN
0<d<min{2m,h}

is called the rth modulus of smoothness of g in My, x(Ip, w).
From Corollary 5 we get Q" (g, h, My x(lo, w)) < c[|gllm, 1 (10,w) for every g € My, \(Io, w), and
Qr(gl + g2, Mp,/\(IO7 ’lU)) S Qr(gh K Mp,)\(IO,w)) + QT(gQu ) Mp,)\(IOa U}))

for g1,92 € Mpa(lp,w), where 0 <A <1, 1< p < 0.
For f € My (Lo, w), 0 <A <1andp>1, we denote

En(f) Myr(Tow) = If = Tl (2o,w)

inf
Th€Pn
the minimal error of approximation of f in the class Py,.
The homogeneous Sobolev-Morrey space WM, x(Ip,w) is defined as the set of all functions
f € L¥¢(1Iy) for which the weak derivative f(") exists on Iy and
1 lnt, + ctosey = 17 Lty n (o) < 0

The non-homogeneous Sobolev—Morrey space W” M, »(Iy, w) is the subset of W™ M,, \(Iy, w), con-
sisting of all functions f € W" M, x (I, w) for which

I F 1w ay x (o) 5= IF Lty x (Tovo) + Ity (20,0) < 00
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Note that if A = 0, then W, (lo) = W" M, (o, w) is weighted Sobolev space and if w = 1,
then W, (lo) = W" M, \(Io,1) is the Sobolev-Morrey space.

For f € My a(lp,w), 0 <A<1,1<p<oo, we A,(ly) and r > 1 the K- functional is defined
as follows

K(f, t)Mp’k(Io’w) - gewr/\i/(nfx(lo w){”f N gHMp,A(IO’w) + tng(T) HMp,A(Io,W)}’ t>0.
P, 9

In this paper we study the direct and inverse problems of approximation theory in weighted
Morrey spaces M, »(ly, w), the closure of the set of trigonometric polynomials in M, »(Io, w) with
1<p<ooandwe Ay(ly). We give a characterization of K-functionals in terms of the modulus
of smoothness in weighted Morrey spaces M (Lo, w).

The direct result can be formulated as follows:

Theorem 1.3. Let f € /K/lvp,A(Io,w), 0<A<1l,1<p<ooandw € Ay(ly). Then for every r € N
we have

1
E7L(f)Mp7,\(Io,w) S C QT (fa nyMp,k(Iovw)) I n 2 r
with a constant C' > 0 independent of f and n.

Similar result in Lebesgue spaces L,(Ip), in terms of usually modulus of smoothness, defined as

sup [|AYf(@)L,(10), h >0, r€N
[t|<h

was proved by S.B. Stechkin in [24]. In weighted Lebesgue spaces L, (Iy,w) = Ly (lo) when the
weight w is in the Muckenhoupt class A,(ly), similar result was proved by N.X. Ky in [17].
The inverse result can be formulated as follows.

Theorem 1.4. Let f € MVP’A(IO,w), 0<A<l,1<p<ooandw € A,(ly). Then for every r € N
we have

n
o (fa %7MP,>\(107U))> < %{Eo(f)/\/lp,x(]o,w) + Z mr_lEM(f)Mp,,\(Io,w)}7 n €N
m=1

with a constant C' > 0 independent of f and n.

Corollary 1. [2] Let f € MVP,A(IO), l1<p<ooand 0 <A< 1. Then for every r € N we have

 (F: Mol < %{Eo(f)Mpwo) LD VAN S

m=1
with a constant C' > 0 independent of f and n.
Corollary 2. [17] Let f € L, ,(lo), 1 <p < o0 and w € A,(Iy). Then for every r € N we have

Qr (fv %7 Lp,w(IO)> S %{EO(]C)LP,M(IO) + mz_lmrlEm(f)Lp,w(Io)}7 neN

with a constant C' > 0 independent of f and n.
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Similar result in Lebesgue spaces L,(Iy) was proved in [25, 26]. By using different modulus of
smoothness, similar result was investigated in the paper [8] in weighted Lebesgue spaces Ly, (1o, w),
where w € A,.

The letters c, C are used for various constants, and may change from one occurrence to another.

2 Some auxiliary results

In this section we give some lemmas which we will need while proving our main results.

Lemma 1. Let f € WM, \(Ip,w), r e NU{0},0< A < 1,1 <p<ooand w € A,(I). Then for
every r € N

<co || ftr

||J5 HMP r(To,w) — ||Mp,>\(107w)

with a constant C' > 0 independent of f.
Proof. Let f € W M, x(Ip, w). Then f) € M, 5(Iy,w) and
ATf / /f(T T4ty 4ty + ...+ t,)dby . dE,

Then

0] =H(1§/6|A:f(~)|dtH N

<H // /|f(r> (-4t + o+ oo+ 1)|dy.. dtdtH
5 Io,’w)

1
N R Mty +tg+ oo+ t,)|dE ...
57«/0 /0 |70+t + 2 ) dt1 IR

<o||5 /:/06{(1S TR Y P

t1+...+tr—1

<90 57"71/0 /0 Hg/o |f (.+u)|duHM,,,A(IO,w)dt1Mdtr_l

<é"

My a(Lo,w)

1 rd
_srllt ().
1) 5/0 A +u)|duHMp,>\(Imw)
<" ||Mf(7.)||/\/lp A (o)
<C§" ||f(r)||MM (Io,w)"

Q.E.D.

Corollary 3. Let f € W;w(lo), reNU{0}, 1 <p<ooand we Ay(l). Then for every r € N
05yt < € 1l r

with a constant C' > 0 independent of f.
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Corollary 4. [2] Let f € W;’)\(Io), reNU{0}, 1 <p<ooand 0 <\ < 1. Then for every r € N
03 vty ) < OF 1l

with a constant C' > 0 independent of f.
Corollary 5. Let f € My \(Ip,w),0 <A <1,1<p<ooandwe A,(lp). Then for every r € N

175 (Pt 3 20,0y < ClFlrty 3 (20.0)
with a constant C' > 0 independent of f.

Proof. Using the triangle inequality we have

1 5
nﬁUmMmm@fﬂb/ﬁAn@uﬂMW%w)
I3 s,
>gé|ﬂ+ﬁmwMM%w

_1 5 " 10
- Hg/o |f(.)|dtHMp,>\(IO7U))+z::() 5/0 |f(.+3t)‘dtHMp,x(Imw)
Lo,
ré
VI

1 rd
ﬁ/o £ +u)|duHMP,A(zo,w)'

Since the function f on R is 27-periodic, without loss of generality, we can assume rJ < 27 and by
boundedness of maximal operator in weighted Morrey spaces [16], we get

My (To,w)

<

My x (Lo, w)

<Nl Mg (o) + Y (5)
s=1

<A Myn oy + > (5)
s=1

< [ llaty (10, + 727

105 (P on o) < W ayyno (20) + 72" CONF Nl My n (200)
= C(p7 T)||f||Mp,A(Io,w)~

Q.E.D.

In the following lemma we give a characterization of K —functionals in terms of the modulus of
smoothness in weighted Morrey spaces M,, x (1o, w).

Lemma 2. Let f € M, \(Ip,w),0 <A< 1, 1<p<ooandwée Ay(ly). Then for every r € N
and 0 < h < ¢(r, A\, w) we have

c Qr(fa ha Mp,)\(IO, UJ)) S K’I“(fv h’)/\/lpy)\(j(),w) S C Qr(fv h» Mp,)\(-[()» w))

with constants ¢, C' > 0.
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Proof. Let g € W™ M, \(In,w). Then g") € M, (Ip,w) and hence ¢\") € L;(Iy). Therefore we
write

Ajg(x / / W@ +ty +tg + oo+ t,)dty ... db

Using generalized Minkowski inequality and Theorem A, we have

1
Q" (f, h, M, A(Ig,w)) := su Hi/ t”
(f p)\( 0 )) |5|<ph 1) | My (Lo w)
(T)
< su +t1+ty+ ...+ t)|dt dt
§<ph5/ H/ / ’g ' 2 ‘ a My x(To,w)
Shri/'.../' Oty to+ o+ t)|dty ..
Wy ), Tt Ndtvedtel]
1 h h 1 ti+...4+tr—1+h
=" rfl/ / {7 | (f’) ’du}dtl dtr—1|| M, (To,w)
h 0 0 h ti+...t+tr—1
1 h h 1 h+(r—1)h ")
<hT / / Hi/ (4w du” dty...dt,_
h’l‘*l 0 0 h 0 ’g ( )‘ MPYA(I(),’LU) 1 1
1 rh ")
h 0 ’g ( )| MP,A(Iva)
< crhT'HMg(r)HMI,)\([O,w) < crhTHg(T)HMP,A(Io,w)'

Hence, from the definition of K.,.(f,h)um, , (1o,w) We obtain

Qr(fa ha Mp,)\(IOa w)) S Qr(f -9, h> Mp,)x(]bv w)) =+ Qr(gv ha Mp,)\(IOa w))
< el = gllmyrzow) + 1197 My 0,0
< CKr(fa h)Mp)\(Io,w)

for any f € My (1o, w).
In order to prove the converse inequality, we introduce a Steklov-type transform for f €
Mpa(Tp,w), 7> 1, h>0:

frh(x)
_E/@ &/ /w L T+9+1f(a;+—(t1+ +t))dt1...dtr)d(5.
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By simple calculations we have

) 5 T _
%/0 /0 (M) (=) 5+ f(z + TT—S(tl+...+tr))dt1...dtr)d6‘

Taking the norm and applying generalized Minkowski inequality, we get

T/ / A11+ +17 )dtl...
sup H(T/ / NN
h<s<h 0 0

1 5 § 1 fottitette
sup ‘f/ / (f/ A’;f(x)dt)dtl...dtr,lH
b<s<n 7=t Jo 0 N0 Syttt v Moy, a(To,w)

sup —— [ [ |15 A% fz dtH dty..dt
ggr;h(;r_l/o LI e, dtes

9
[ Frn = FllMpr (Tow) < 7 ds

My x(To,w)

IN

Mp,)\(Ig,w)

IN

1 rd
< sup H / |AT \dtH
% 5<h 5 0 p)\ Io,w)
1 6
<r su H’/ AT f(x duH = Q" (f, hy My (T, w)).
s 5 [ats@il e 2 Myt w)

Differentiating f », we have

(r) _ 2 " 1 = T r+s r r
£ @) = h/; 5 L ) A f(w)ds
Therefore,
2 M1 N
R . 5 L0(75) s @)

1 h
i [ 18 @)as
1AL

T r o1 =h .
—) T;Sh/o AT f ()|,

I
Sk
lng
A
[
=
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Hence,
1My r o) S b [0, F Lty o
< erh ™" (f, hy My x(In, w)).
Thus,
Ko (f 1) sy n(tow) < 1 = Fronll vty s oy + 7 IES Lty o
S c QT(f, h7 Mp,)\([07 U]))
Q.E.D.
Let oo
ap .
f(z) ~ > + Z arcoskx + bpsinkx (2.1)

k=1

be the Fourier series of f € /\A/l/p,A(Io,w), 0<A<1,1<p<ooand S,(z,f) be its n th partial
sum. Under the condition w € A;(ly), using the method of proof of Lemma 1 and applying the
appropriate results in weighted Lebesgue spaces given in [9], [10], we see that

”f - Sn(7 f)||Mp,A(107w) < CEn(f)Mp,)\(I(Jaw)’ (2 2)
En(f)_/\/tp,k([o,w) < CEn(f)/\/[p:A(Ig,w)a

where f is the conjugate function of f.

Lemma 3. Let w € Ay(ly) and r > 1. Then for any f € WTMVP7)\(IO,'ZU), 0< A<, 1<p<oo,
we have

En(F) sty st < ool 7Oty rttor: €N
with a constant C = C(p, \, w, 7).
Proof. Let .
flx) ~ Z agcoskx + bysinkx
k=0

be the Fourier series of f € /{/lvp’A(Imw), 0<A<1,1<p<ooand Sy(z,f) be its n th partial
sum. Then

o0
f(x) ~ Z bycoskr — aysinkx.
k=0
Setting
Ag(z, f) := axcoskz + bysinkz, k€N
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we have f(z) = Y Ag(z, f) in the norm of M, x(Ip,w). Since
k=0

Ay (z, f) = agcoskx + bysinkx

rm rm T T
= akcos(kx + CEE ?) + bksm(kx + 5 ?>
T I

= 0057 [akcosk (x + Qk) + brsink (x + ﬁ)}

+ smri7T [aksmk (x + %) — bycosk (x * 2712)}

_Ak(m—i- ,f)cos —|—Ak<x+2 ,f)smﬂ

2
and o
Ay (2. f0) =k Ax (2 + 5. 1),
we get
kZ:OAk(a:,f) = Ao(z, f) +cos7;rkz_lAk<x+;;,f) +87;771T27Tk§_:114k($+;7;»]?)
= Ao(x, f) + COS% ; %Ak (x, f(T)) + Sm%r ; %Ak (177 f(r)).
Then

f@)=Su(@, /)= > Apl, f)

k=n-+1
:cosvﬂg7T i %Ak(x,f(r))Jrsin%T i ?Ak(x F).
k=n+1 k=n+1
Taking into account that
S A ) = Y [Sk(w f) = S ()]
k=n-+1 k=n-+1
= >[50 10) — @] - S £0) - O @) )
k=n-+1
- 1 1 T T 1 T T
- 3 (- )5 - 1000] - e ) -0

k=n-+1

and

> )= 3 (g gy 5 £ - )]

k=n+1 k=n+1
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_m%)r [Sn (z, 7)) — fO© (x)}’

by (2.2), we have

> 1 1
S < L HS LMY )
||f HMP A(IO7 ) k:;,l (kj7 (l{—‘rl)r) k( f ) f MP,)\(I(Juw)
1
_ LMY _ )
+(’I’L—|—1)r Sn(,f ) f My (Io,w)
B L F)Yy )
* Z ( v 1)T)HS’“( S =1 My (To,w)
]_ ~ ~
S (-, FOY) = F)
Jr(n—i—l)T ( ! ) f My x(To,w)
> 1 1 1
Lt (r) ot (r)
Sc{k_zn;l(kr (k+1)T)E’“(f Vst st ¥ Gy e sttt

= /1 1 = 1 .
* C{ Z (p B W)Ek (f( ))Mp,x(fmw) * mEn (f( ))MPA(Iva)}'

k=n-+1

After simple calculations and using second relation of (2.2), we get

Hf_ S”("f)HMp,A(Io,w
< OB s ] k:zn:ﬂ (- G i ) ; )
+0En(f(r))Mp,x<zo,w>{ k;ﬂ (/.gi R0 +1 1)r) * (n+1 1)r}

c
_Y B (w
=+ 1)’“E"(f ) My (1o

Hence,

En(f) Myx(To,w)

IN

||f - Sn( K f)HMpTA(Io,w)

IN

T O T
EEn(f( ))Mp,kug,m < ;Hﬂ )HMP,A(IO,w)'
Q.E.D.

Now we will give the Bernstein inequality in Morrey spaces. Bernstein inequalities date back
to 1912 when S.N. Bernstein proved the first inequality of this type for L., norms of trigonometric
polynomials. A generalization can be found in [5]; this result, which is credited to Zygmund, states
that any trigonometric polynomial T of degree n € NU {0} satisfies

T 1y 0y < CPFIT I L, (1)



134 Z. Cakir, C. Aykol, D. Soylemez, A. Serbetci

for 1 < p < co. Therefore we have the following:

Lemma 4. (Bernstein inequality in weighted Morrey spaces) Let w € A,(Ip) and let f € M,, (Lo, w),
0<)A<1,1<p<oo. Then for every trigonometric polynomial T}, and k € N

IT Ay o) < CPFI Tl s (zo), 7 € NU{O}
with a constant C independent of n.

Proof. The proof is obtained similarly to that of Lemma 1 by using [17], where the Bernstein
inequality was proved in L, (Iy, w). Q.E.D.

3 Proofs of main results
Proof of Theorem 1.3 Let g € Wrﬂp7>\([0, w). From Lemma 3 we get
En(f)./\/lp,k(]o,w) < En(f - g)/\/lp)\(]o,w) + En(g)/\/[p»\([g,w)

Cho
S ||f - g”Mp‘)\(Io,w) + FHQ( )H/\/[,,,A(Iu,w)'
Since this inequality holds for every g € W"/T/l/p’ A(Zo, w), by the definition of the K —functional
and by Lemma 2, we get

1

En(f)/\/lp,x(fmw) <CK;, ('f’ ﬁ)M A(To,w)

1
<O (= Myallo,w)).
Thus the proof is completed.

Proof of Theorem 1.4 Let T,, € P,, be the polynomial of best approximation to f in /,\\/l/p)\(lo, w).
For any integer 7 = 1,2, ...,

1 1
K (£.3) - e Ly }
! N/ My x(Io,w) QEW(T).}\I/llp,A(IO,w) 17 = gllsty o0y + n’"”g g 20,0
1

< = Toresllayttow + = 1T vty st
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Using Lemma 4, we get

J
TS5ty n oo < IS = T8ty oy + 9 I T30 — T
1=0

|Mp,>\(107w)

J
< C{||T1 — TOHMP,A(Io,w) + Z 2(2+1)r||T2i+1 — 15 ”Mp,;(Io,w)}
1=0

IN

C{E1(f)M,,,A(10,w) + Eo(f) M, »(To,w)

J
+ Z 2(l+1)T‘{E21‘+1 (f)Mp,/\(IO,w) + Egi (f)Mp,A(IO7w) }}
=0

J
< C{Eo(f)/\/lp,;(lo,w) + Z AR O (f)Mp,A(Io,w)}
=0

J
C{Eo(f)/\/lp,;(lo,w) +2"E1(f) My (10,0) T Z 2(Z+1)TE2i(f)MP,A(IO,w)}-

i=1
Since v
. 21
20 B (f) Myr (o) S22 D M Br(f) My (o) (3.1)
m=2'—141
for i > 1, we have
IS5 ity o)
27
<clE D 227’ r—lE
< O(f)M;n,A(Iﬂvw) + 1(f)Mp,A(Io,w) + Z m m(f)MPv*(I"*w)
m=2

27
< C{EO(]F)MP,A(IO,U}) + Z mrilEm(f)MpA(]mw)}.
m=1

Selecting j such that 2/ <n < 2771 from (3.1) we get

2(j+1)TE2j+l (f)M (o)
E2j+1 (f)Mp,A(Io,w) = 2(j+1)r 220

25
1 o 1 .
< ﬁ20+1) E2.1+1(f)Mp1>\(Io,w) < W E m 1Em(f)Mp7A(Io,w).
m=2i-141
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Now by Lemma 2, we conclude that

& <f7 %’ My (o, 'w)) < OKy (f’ %)Mp,x(fmw)

1
S CEQJ’-H (f)Mp1%(107w) + F |T2j+1 HMp,)\(IO,U))

2J

C -
< E Z m 1Em(f)Mp,A(Io7w)
m=27-141
C 27
+ W{Eo(f)/\/lp,x(lo,w) + Z mT'_lEm(f)M"”\(IO’w)}
m=1

C L
< F{EO(f)Mp,A(IU,w) + Zm 1Em(f)Mp,A(Io,w)}'
m=1

Thus the proof is completed.
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